Worried about time? Analysis? So is your neighbor.

You made it to Biology II, and you’ve realized it’s a completely different course than Biology I. Uh oh.

I asked all of my Principles of Biology II students this semester to share “Any concerns that you have about the class” after the first day. Here’s a peek at what y’all said, and some help! (I’ll update this later this week after lab students finish the orientation)

General worries…

  • Staying organized / Managing my time / Due dates – Find someone to help you be accountable. Meet, text, or email each other when you’re supposed to be reading the book/your notes. “This chapter’s killing me… are you doing any better?” Do you need music in the background while you study?
  • A lot of information / Multiple chapters per week – Review vocabulary terms & section headings first. Skim the chapter, looking for unfamiliar ideas. Mark those sections for extra time, and take notes about what you don’t understand. Don’t highlight everything.
  • Keeping up with notes during lecture – Focus on added explanations that I mention in class. Don’t try to write down every word – outline & use short notes – especially if it’s already on the slide (I post them on the course website). Many students print them or add typed notes on the digital pdf itself. This is definitely how I went through organic chemistry!
  • I’m not a science major / Missed the first week / Took biology I elsewhere / Struggled with biology I – Ask questions, and don’t panic. Use the course website to keep an eye on your grades. Ask for help early: Office hours (free…), STEM tutoring (free), making friends (okay, you might buy them lunch sometimes). I also post extra videos and activities that will give you another run through of many of the crucial topics, both for Biology I and II.
  • Study skills – Focus on understanding the concept, then fit the terminology into the broader story. Use active studying techniques – quiz yourself, write out answers to end-of-chapter questions, explain things to study partners out loud. Don’t make the mistake of thinking that re-reading your notes / chapter / flash cards is going to be the most effective use of your time.

Information worries…

  • Making the best grade that I can / Making an A – Shoot for the stars, and at least you’ll land on the moon. Read the study guides along with the textbook chapter when possible, so that you know what the most important topics will be. Find out why/how you answered wrong when it happens. Always aim for that A, and back up that ambition with solid, productive work.
  • The comprehensive final exam – Study Guides will be posted on D2L throughout the semester. Come to office hours and review exams I-IV after they are graded so that you understand why/how/when you chose the incorrect answers.
  • This class will be challenging – Certainly, but there is a bit less memorization than Biology I. The broader topics (evolution) are more intuitive to understand, though the taxonomy will require you to do the most memorization. Focus on understanding the concept, then fit the terminology into the broader story.  This class is designed to prepare you for amazing upper level courses – such as parasitology, ecology, & macroevolution. I also post extra videos and activities that will give you another run through of many of the crucial topics, both for Biology I and II.
  • I need to apply the information and think critically / How does this connect to everyday life – This is true in all of your courses, honestly. Stop and reflect on the WHY, HOW, and WHAT of the topic. You already use many of the concepts as part of how you adapt your decisions on a daily basis. Natural selection? Ecology? It’s all costs vs. benefits in a world of limited resources. You can often start by putting yourself “in the organism’s shoes,” but don’t take it too far. Many species do not have the same level of memory and self-awareness that humans do, and respond on a much more instinctual level.
    • Use logic to think through the possibilities.
    • Avoid falling into the teleological trap of thinking about what an organism “wants” based on your own ideas as a human.
    • Set aside belief. This is not a course on religion, opinion, or anthropology. Science is the search for truth about how the world works.

It helps to remember that you’re all in this boat together, even if your seats (your lives/backgrounds) are different!


Featured image: Science scarf and epic purple shirt – cool things from my mother-in-law and mom, both of whom love that I’m a college professor.

Advertisements

Since you asked… Mammals!

Sugar gliders vs. Flying squirrels

Sugar glider = marsupial, endemic to Australia & New Guinea
Flying squirrels = placental mammal, several genera distributed around the world

We briefly discussed these two organisms in class as an example of analogous traits: both have extended flaps of skin between their fore and hind limbs & use this skin to glide between trees. However, this is not a trait shared by all species in the most recent taxon they share in common (Class Mammalia), indicating that the characteristic is analogous instead of homologous. This is also an example of convergent evolution: The same type of trait developed independently multiple times, because of similar selective pressures on different species.

To see why these two types of organisms are only distantly related, let’s take a look at their taxonomic classification.

  1. Both are in class Mammalia: have hair & mammary glands, among other characteristics distinguishing them from reptiles.
  2. There are two large subclassifications of mammals: Those that have live birth (Metatheria & Eutheria) and those that have shelled eggs (Monotremes)
  3. Within those that have live birth: Eutheria (young protected and supplied with nutrition internally by a placenta, may also be nursed externally), Metatheria (no placenta forms to maintain the young, typically nursed in externally a pouch for an extended period)
    1. Sugar gliders are in the clade Metatheria, and are marsupials (infraclass Marsupialia) currently native to Australia (superorder Australidelphia): Their young are born very vulnerable and without fur. They have an external pouch, in which they nurse these young for ~110 days. Video
      • Not all marsupials have pouches either, though all nurse non-placental young outside their bodies.
      • Incidentally, females also have two uteri (uterus x 2) and males have a bifurcated penis, both of which are common in marsupials.
    2. Flying squirrels are in the clade Eutheria, and are rodents (order Rodentia): there are two main taxa of flying squirrels, one found in the Americas, the second found in northern Eurasia. All are placental, though their young are still born hairless and need a great deal of protection. They are still nursed (typically for at least a month), though not in a pouch. Video

For all practical purposes they both function similarly, but their physiological differences & the comparative immaturity of their young at birth are key differences between these two taxa.

The Story: Some time long after the evolutionary divergence between eutherian and metatherian mammals, natural selection in different locations favored the physical and behavioural characteristics that permit both sugar gliders and flying squirrels to glide.

The Value of “I don’t know.”

Can you ever answer an unasked question?

Allow yourself to admit that you need more time to answer, instead of stopping questions in their tracks.

Although it might seem most valuable (and good for your ego) to have a ready answer to every question, it’s basically impossible to know everything. By giving an answer that isn’t well-grounded in reality or is blatantly wrong, you actually risk others losing more confidence in your ability to teach, learn, lead, or follow, than if you simply admitted your ignorance. Same principle follows regarding admitting when you’re wrong.

MoreIKnow

Consider this: What do you risk by assuming you know?

  • Does a bad decision have potentially harmful consequences?
  • Are you excluding better options?
  • How do your actions affect others’ perception of you?
  • Is someone else relying on your statement’s accuracy?

Ignorance is a much simpler trait to alter than arrogance. 

We live in a golden age of information, with thousands – nay, millions – of free resources at our literal fingertips. As a professor, I would rather you learn the skills to find reliable answers than have you blindly follow the swift and volatile statements of the masses. Consider these questions below, along with applying basic principles of information literacy and pseudoscience analysis. (‘Cause I’m a student, that’s why.)

  • Is the answer you hear one that makes logical sense?
  • Does your source have an ulterior motive for providing the information?
  • Would this answer be likely to change if one aspect of it were actually false?
  • Are there many widely varying versions of this “correct answer?”

featured image: gold-tipped bottlebrush (Melaleuca polandii) in Armstrong’s International Garden (Feb 2017)

It’s smart to admit when you’re wrong.

An article by Business Insider recently highlighted the “five most fundamental differences between smart and stupid people,” and it doesn’t read like the success self-help book you’d expect.

“In a situation of conflict, smart people have an easier time empathizing with the other person and understanding their arguments. They are also able to integrate these arguments into their own chain of thought and to reconsider their opinions accordingly.”
-Lisa Schonhaar, Gisela Wolf: Business Insider 

My mom and I have recently been discussing the sticker (and t-shirt) she gave to me as a birthday gift, both of which include this exasperated saying: I Can Teach It To You, But I Can’t Understand It For You. She shared this article with me, which highlights empathy, cooperation, critical thinking, and honesty as some of the most telling characteristics of smart people.

How smart is your attitude?

Mini “Huzzah!” Moment

It’s always a great moment…
…to see evidence that my students are paying attention in class.

  • The general Beer’s Law equation in the lab manual: Molecule Concentration = Absorbance(at a specific wavelength) * Constant
  • The general Beer’s Law equation I wrote on the board: [molecule]=A??? x constant
  • What several of my students put on the postlab: [molecule]=A??? x constant

There’s nothing really wrong with writing the “book” version, but it was nice to see that my simple version stuck with them.

Since you asked… Soap!

A student in Principles of Biology asked a question today that I didn’t know the answer to – are phospholipids the molecules in soap that facilitate its ability to dissolve both polar (carbohydrates, nucleic acids, and some proteins) and nonpolar (lipids and some proteins) materials?

The short answer: Nope! Soaps aren’t using any of the 3 major types of lipids, it’s a modified single fatty acid chain.

The longer answer: Sodium salt and potassium salt versions of fatty acids are the main active component of soaps. In fact the process of saponification serves primarily to separate the glycerol backbone from the fatty acid chains. This process results ionized chains in the solution, which then form ionic bonds with Na+ or K+ ions when salts are added to the mixture.

E.g. Sodium oleate: 

Salt form, found in soap

Comes from lipids containing oleic acid

1200px-oleic-acid-based-on-xtal-1997-2d-skeletal

Fatty acid form, found in phospholipids or triglycerides

Cheers for science & research!

 

The book-length answer: 
https://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Soap

Nervous? Excited? So is your neighbor.

From freshman to returning grandmother, everyone has to go through that first day of a new class.

I asked my Principles of Biology I students this semester to share “Any concerns that you have about the class” after the first day. Here’s a peek at what y’all said, and some help!

General worries…

  • Finding the textbook – Armstrong bookstore, the textbook broker across from campus, Amazon.com, Chegg.com, Half.ebay.com … Just remember, you’ll need this book again for Biology II. Renting might not actually be the best option.
  • Staying organized / Managing my time – Find someone to help you be accountable. Meet, text, or email each other when you’re supposed to be reading the book/your notes. “This chapter’s killing me… are you doing any better?”
  • Keeping up with notes during lecture – Focus on added explanations that I mention in class. Don’t try to write down every word – outline & use short notes – especially if it’s already on the slide (I post them on the course website for you!).
  • Not sure what/how to read effectively – Don’t highlight everything. Skim the chapter first, looking for unfamiliar ideas. Mark those sections for extra time, and take notes about what you don’t understand.
  • It is a really big class – Well, you have the option to either stand out or blend in, but anyone is welcome to ask questions. There are also more options for who to study with! Also, my office is 50% less intimidating than most professors’ offices. Come by during office hours and ask for help.
  • Memorization – Know the story, memorize the details. Biology is always integrated, so make sure you can put the pieces together. Example: Facts – electrons are negatively charged. The valence shell is involved with bonding. Story – sharing & stealing electrons is the basis for constructing molecules, and the valence structure tells you how an element will bond.
  • This is my first college class / I have first year jitters… / It’s been 10 years since I was in school – Ask questions, and don’t panic. Use D2L/E-classroom to keep an eye on your grades. Ask for help early: Office hours (free…), STEM tutoring (free), Supplemental Instructors (free), making friends (okay, you might buy them lunch sometimes).

Information worries…

  • Making the best grade that I can / Making an A – Shoot for the stars, and at least you’ll land on the moon. Read the study guides along with the textbook chapter, so that you know what the most important topics will be. Always aim for that A, and back up that ambition with solid, productive work.
  • I might not catch on as fast as other students – Positive thinking + Positive action = Positive results. Reality check might be that you need to ask for help: Office hours (free…), STEM tutoring (free), Supplemental Instructors (free), making friends (okay, you might buy them lunch sometimes).
  • Not learning as quickly as I did in high school – Find out how you learn. Does it help if you draw everything? Do you need music in the background while you study? Take notes in class. Answer the questions at the end of the chapter – I’m not going to assign them like your teacher used to, but it will help you learn if you do them.
  • Have I forgotten my high school biology? – Maybe so, but don’t panic. Khan academy might be helpful, or CrashCourse. I post extra videos and activities that will give you another run through of many of the crucial topics. Send me an email or stop by during office hours.
  • Worried about the topics that I struggled with last time – Don’t psych yourself out, psych yourself up! You are going to knock them out of the park this time, because you are planning ahead, asking for help, and working hard. Remember to still study for the topics that you understood well, as it’s easy to forget the basics. What’s the mitochondrion do again?
  • This class will be a lot of work / will be difficult – Maybe so, but you can plan ahead. Do the assignments, be prepared, and find out why/how you answered wrong when it happens. This class is designed to prepare you for amazing upper level courses – such as parasitology, applied microbiology, environmental chemistry…
  • The comprehensive final exam – Study Guides on D2L are already posted! Come to office hours and review exams I-IV after they are graded so that you understand why/how/when you chose the incorrect answers.

It helps to remember that you’re all in this boat together, even if your seats (your lives/backgrounds) are different!


Featured image: Science scarf and epic purple shirt – cool things from my mother-in-law and mom, both of whom love that I’m a college professor.

Healthy Eating Plate

Sometimes simpler is better.

Eat real foods, avoid hidden calories (such as sugary drinks), and exercise so that your body actually uses the calories that you consumed.

HealthyEatingPlate

Professors Disappear at the end of the Semester.

Well, at least I do. It’s been a very busy past 2 months, and I’ve been busy even amongst the grading and teaching too. What have I been doing? Earth Day March for Science, visiting family, cheering on spring blossoms.

Being science-y.

And being nerd-y. How? Dungeons and Dragons, of course. Can’t go wrong with the classics. My current character is a Norse skald (bard) from ~800 CE, and we somehow managed to sail from Midgard to Vanaheim – magic is much cooler there, but there are were-beasts, and two moons. I’ve been playing a lot of Dragon Age: Inquisition and Origins, especially since I turned in final grades. Solas and Blackwall are two of my favorite characters, and I’ve started writing a Solas + Inquisitor fan-fiction “A Long Hunt” to show my love for it. Later chapters of the fanfic will definitely be NSFW.

Being nerd-y

What am I up to next? I’m teaching future K-5 teachers how to “Do Science” in the course Earth and Life Science for Early Childhood Education Majors, so I’m preparing materials for starting June 5th.

Food for Thought – And Eating.

A discussion of biodiversity and the role of fungi as decomposers turned into a chat about “expired” bread today, and afterward (while making a sandwich with “expired” bread) I decided that they could probably benefit from a little bit more concrete advice to back up our discussion. One of the students asked how they [the bacteria and fungi] got to the food after you put it in the refrigerator. We talked about what preservatives are and the balance between safe consumption and preventing organisms from growing in the food, and about the fact that the fungal spores and bacteria are in the air and on the surfaces all around us. After a few incredulous looks after discussing moldy bread, I threw up my hands and gave in. “Look, I couldn’t tell you just how many products in my fridge right now are past their printed dates, and they are perfectly safe and good to eat. There are plenty of other foods that don’t have expiration dates on them either because – for example – it’s just a raw carrot.”

This is what I shared with them after class, and is generally my guide for why I continue to buy short-dated products and tear moldy bits off of bread and eat the rest.


Since I wouldn’t want to provide advice without evidence… a bit more information about so-called “expiration dates” on perishable products such as bread. 

My version: The dates are advice from the manufacturer and/or a regulation agency, and their purposes are two-fold: Sell products that you are pleased with, and reduce the chance of you from being harmed by the product. Use dates as guidelines for how fresh a product is so that you can plan to use the food within an appropriate amount of time. The dates are more likely to be indicative of food quality and how quickly it should be sold, and is not a deadline for using the product.

IMAG0007

Evidence: Bread with a March 01 “Sell-by” date, which was slightly dry but still delicious and not the slightest bit moldy. 

Learn about food safety, especially the types of foods that tend to develop harmful bacteria or fungi that are likely to be hazardous to your health. And you should always know how to handle your food safely! Safe cooking is just as essential as safe storage. Keep in mind however, that all of this information from the USDA below is based on customs and policies in the US and is general advice covering a range of foods and people, and additionally does not always reflect the rest of the world.

Use good judgement, and know your own body. I have a strong immune system from years of living in the country on a farm and I have an in-depth working knowledge of how organisms live and survive, so I’m likely to make good decisions about the safety of my food. If you don’t exercise good judgement, there will often be consequences – just as there were for our early human ancestors 2,000,000 years ago (Yes, 2 million years ago).


Info from the USDA about labeling: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/food-labeling/food-product-dating/food-product-dating 

Are Dates for Food Safety or Quality?
Manufacturers provide dating to help consumers and retailers decide when food is of best quality. Except for infant formula, dates are not an indicator of the product’s safety and are not required by Federal law.

How do Manufacturers Determine Quality Dates?
Factors including the length of time and the temperature at which a food is held during distribution and offered for sale, the characteristics of the food, and the type of packaging will affect how long a product will be of optimum quality. Manufacturers and retailers will consider these factors when determining the date for which the product will be of best quality.

For example, sausage formulated with certain ingredients used to preserve the quality of the product or fresh beef packaged in a modified atmosphere packaging system that helps ensure that the product will stay fresh for as long as possible. These products will typically maintain product quality for a longer period of time because of how the products are formulated or packaged.

The quality of perishable products may deteriorate after the date passes, however, such products should still be safe if handled properly. Consumers must evaluate the quality of the product prior to its consumption to determine if the product shows signs of spoilage.

Food Safety Tips from the USDA: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/basics-for-handling-food-safely/ct_index 


Featured image: Perfectly safe, delicious bread that was discounted 3 weeks ago because of the March 1st sell-by date.