It’s smart to admit when you’re wrong.

An article by Business Insider recently highlighted the “five most fundamental differences between smart and stupid people,” and it doesn’t read like the success self-help book you’d expect.

“In a situation of conflict, smart people have an easier time empathizing with the other person and understanding their arguments. They are also able to integrate these arguments into their own chain of thought and to reconsider their opinions accordingly.”
-Lisa Schonhaar, Gisela Wolf: Business Insider 

My mom and I have recently been discussing the sticker (and t-shirt) she gave to me as a birthday gift, both of which include this exasperated saying: I Can Teach It To You, But I Can’t Understand It For You. She shared this article with me, which highlights empathy, cooperation, critical thinking, and honesty as some of the most telling characteristics of smart people.

How smart is your attitude?

Advertisements

Since you asked… Soap!

A student in Principles of Biology asked a question today that I didn’t know the answer to – are phospholipids the molecules in soap that facilitate its ability to dissolve both polar (carbohydrates, nucleic acids, and some proteins) and nonpolar (lipids and some proteins) materials?

The short answer: Nope! Soaps aren’t using any of the 3 major types of lipids, it’s a modified single fatty acid chain.

The longer answer: Sodium salt and potassium salt versions of fatty acids are the main active component of soaps. In fact the process of saponification serves primarily to separate the glycerol backbone from the fatty acid chains. This process results ionized chains in the solution, which then form ionic bonds with Na+ or K+ ions when salts are added to the mixture.

E.g. Sodium oleate: 

Salt form, found in soap

Comes from lipids containing oleic acid

1200px-oleic-acid-based-on-xtal-1997-2d-skeletal

Fatty acid form, found in phospholipids or triglycerides

Cheers for science & research!

 

The book-length answer: 
https://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Soap

Nervous? Excited? So is your neighbor.

From freshman to returning grandmother, everyone has to go through that first day of a new class.

I asked my Principles of Biology I students this semester to share “Any concerns that you have about the class” after the first day. Here’s a peek at what y’all said, and some help!

General worries…

  • Finding the textbook – Armstrong bookstore, the textbook broker across from campus, Amazon.com, Chegg.com, Half.ebay.com … Just remember, you’ll need this book again for Biology II. Renting might not actually be the best option.
  • Staying organized / Managing my time – Find someone to help you be accountable. Meet, text, or email each other when you’re supposed to be reading the book/your notes. “This chapter’s killing me… are you doing any better?”
  • Keeping up with notes during lecture – Focus on added explanations that I mention in class. Don’t try to write down every word – outline & use short notes – especially if it’s already on the slide (I post them on the course website for you!).
  • Not sure what/how to read effectively – Don’t highlight everything. Skim the chapter first, looking for unfamiliar ideas. Mark those sections for extra time, and take notes about what you don’t understand.
  • It is a really big class – Well, you have the option to either stand out or blend in, but anyone is welcome to ask questions. There are also more options for who to study with! Also, my office is 50% less intimidating than most professors’ offices. Come by during office hours and ask for help.
  • Memorization – Know the story, memorize the details. Biology is always integrated, so make sure you can put the pieces together. Example: Facts – electrons are negatively charged. The valence shell is involved with bonding. Story – sharing & stealing electrons is the basis for constructing molecules, and the valence structure tells you how an element will bond.
  • This is my first college class / I have first year jitters… / It’s been 10 years since I was in school – Ask questions, and don’t panic. Use D2L/E-classroom to keep an eye on your grades. Ask for help early: Office hours (free…), STEM tutoring (free), Supplemental Instructors (free), making friends (okay, you might buy them lunch sometimes).

Information worries…

  • Making the best grade that I can / Making an A – Shoot for the stars, and at least you’ll land on the moon. Read the study guides along with the textbook chapter, so that you know what the most important topics will be. Always aim for that A, and back up that ambition with solid, productive work.
  • I might not catch on as fast as other students – Positive thinking + Positive action = Positive results. Reality check might be that you need to ask for help: Office hours (free…), STEM tutoring (free), Supplemental Instructors (free), making friends (okay, you might buy them lunch sometimes).
  • Not learning as quickly as I did in high school – Find out how you learn. Does it help if you draw everything? Do you need music in the background while you study? Take notes in class. Answer the questions at the end of the chapter – I’m not going to assign them like your teacher used to, but it will help you learn if you do them.
  • Have I forgotten my high school biology? – Maybe so, but don’t panic. Khan academy might be helpful, or CrashCourse. I post extra videos and activities that will give you another run through of many of the crucial topics. Send me an email or stop by during office hours.
  • Worried about the topics that I struggled with last time – Don’t psych yourself out, psych yourself up! You are going to knock them out of the park this time, because you are planning ahead, asking for help, and working hard. Remember to still study for the topics that you understood well, as it’s easy to forget the basics. What’s the mitochondrion do again?
  • This class will be a lot of work / will be difficult – Maybe so, but you can plan ahead. Do the assignments, be prepared, and find out why/how you answered wrong when it happens. This class is designed to prepare you for amazing upper level courses – such as parasitology, applied microbiology, environmental chemistry…
  • The comprehensive final exam – Study Guides on D2L are already posted! Come to office hours and review exams I-IV after they are graded so that you understand why/how/when you chose the incorrect answers.

It helps to remember that you’re all in this boat together, even if your seats (your lives/backgrounds) are different!


Featured image: Science scarf and epic purple shirt – cool things from my mother-in-law and mom, both of whom love that I’m a college professor.

New Semester, New Technique?

Humans love stories, but get bogged down by information.

“Shrimp wisely divide their time between eating, hiding from predators, and finding mates.”

“Shrimp respond to variable changes in their environment in order to optimize their caloric intake while minimizing predation risk and maximizing reproduction.”

Let’s be honest – it’s much simpler to understand the first sentence, but as scientists we’re expected to write the second sentence. The content is basically the same, although the details are variable.

Why do readers relate to the first version?
1 – less jargon (technical language)
2 – intuitive phrasing that connects the main ideas

Why is the first version problematic?
1 – less information, fewer details
2 – teleological (the shrimp has goals)

In teaching, can we reconcile the two? Can we use stories to help our students build mental models of the topics?

In an attempt to utilize one of the ideas that we discussed in our faculty reading round-table last semester, I am incorporating the idea of narrative sensemaking, or storied truths, into my biology lectures. The idea is to use sensible, intuitive stories to understand realistic, complex, patterns in the real world.

Good stories don’t just have to come from fantastical imaginings, rooted in the mythos of our ancestors. Scientific facts don’t have to be clinical and hyper-accurate in order to be useful. Just like a good teaching model, we can incorporate the best parts of both.

Why am I doing this?

Students are often frustrated by exam questions that require critical thinking skills, and say they are “too hard” or “not based on the lecture.” I am hypothesizing (Yep, I’m a scientist – I do this all the time.) that part of this problem is a mental disconnect from the material.  Many of the extra study materials that I direct my students to use are youtube videos (Hello, CrashCourse) or activities that have a clear, succinct, and entertaining story – they are more likely to mentally interact with the information more intuitively than if I were to simply remind them to “review section 7.3 in the textbook”.

Understanding connections is key to successfully studying increasingly complex topics in science, not simply rote memorization. Without the ability to think on their feet, analyze available information, and reach sound conclusions, they also are not productive, scientifically literate citizens. They can’t make connections if they don’t understand how the story works in the first place.

How am I going to do this?

I’m adding “What’s the story?” pieces to my existing lectures, in an effort to regularly remind students of the larger picture. My goal is to create 1-2 sentence story bits that aren’t just summary, but illustrate the narrative thread running through the past few topics for the section of material that we’ve just discussed.

For example, Chapter 1 of our Campbell Biology textbook discusses overall themes in biology. The first topic is the basic properties of life vs. non-life, moving on to where it is found. What’s the story? Life has adapted to deal with a wide variety of conditions.

What are the results?

I’ll let you know!


Featured image: Stalactites and stalagmites at Carlsbad Caverns (July 2016)

Healthy Eating Plate

Sometimes simpler is better.

Eat real foods, avoid hidden calories (such as sugary drinks), and exercise so that your body actually uses the calories that you consumed.

HealthyEatingPlate

Food for Thought – And Eating.

A discussion of biodiversity and the role of fungi as decomposers turned into a chat about “expired” bread today, and afterward (while making a sandwich with “expired” bread) I decided that they could probably benefit from a little bit more concrete advice to back up our discussion. One of the students asked how they [the bacteria and fungi] got to the food after you put it in the refrigerator. We talked about what preservatives are and the balance between safe consumption and preventing organisms from growing in the food, and about the fact that the fungal spores and bacteria are in the air and on the surfaces all around us. After a few incredulous looks after discussing moldy bread, I threw up my hands and gave in. “Look, I couldn’t tell you just how many products in my fridge right now are past their printed dates, and they are perfectly safe and good to eat. There are plenty of other foods that don’t have expiration dates on them either because – for example – it’s just a raw carrot.”

This is what I shared with them after class, and is generally my guide for why I continue to buy short-dated products and tear moldy bits off of bread and eat the rest.


Since I wouldn’t want to provide advice without evidence… a bit more information about so-called “expiration dates” on perishable products such as bread. 

My version: The dates are advice from the manufacturer and/or a regulation agency, and their purposes are two-fold: Sell products that you are pleased with, and reduce the chance of you from being harmed by the product. Use dates as guidelines for how fresh a product is so that you can plan to use the food within an appropriate amount of time. The dates are more likely to be indicative of food quality and how quickly it should be sold, and is not a deadline for using the product.

IMAG0007

Evidence: Bread with a March 01 “Sell-by” date, which was slightly dry but still delicious and not the slightest bit moldy. 

Learn about food safety, especially the types of foods that tend to develop harmful bacteria or fungi that are likely to be hazardous to your health. And you should always know how to handle your food safely! Safe cooking is just as essential as safe storage. Keep in mind however, that all of this information from the USDA below is based on customs and policies in the US and is general advice covering a range of foods and people, and additionally does not always reflect the rest of the world.

Use good judgement, and know your own body. I have a strong immune system from years of living in the country on a farm and I have an in-depth working knowledge of how organisms live and survive, so I’m likely to make good decisions about the safety of my food. If you don’t exercise good judgement, there will often be consequences – just as there were for our early human ancestors 2,000,000 years ago (Yes, 2 million years ago).


Info from the USDA about labeling: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/food-labeling/food-product-dating/food-product-dating 

Are Dates for Food Safety or Quality?
Manufacturers provide dating to help consumers and retailers decide when food is of best quality. Except for infant formula, dates are not an indicator of the product’s safety and are not required by Federal law.

How do Manufacturers Determine Quality Dates?
Factors including the length of time and the temperature at which a food is held during distribution and offered for sale, the characteristics of the food, and the type of packaging will affect how long a product will be of optimum quality. Manufacturers and retailers will consider these factors when determining the date for which the product will be of best quality.

For example, sausage formulated with certain ingredients used to preserve the quality of the product or fresh beef packaged in a modified atmosphere packaging system that helps ensure that the product will stay fresh for as long as possible. These products will typically maintain product quality for a longer period of time because of how the products are formulated or packaged.

The quality of perishable products may deteriorate after the date passes, however, such products should still be safe if handled properly. Consumers must evaluate the quality of the product prior to its consumption to determine if the product shows signs of spoilage.

Food Safety Tips from the USDA: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/safe-food-handling/basics-for-handling-food-safely/ct_index 


Featured image: Perfectly safe, delicious bread that was discounted 3 weeks ago because of the March 1st sell-by date. 

The Scientist

Scientists don’t think the same way as your average person.

What does that mean? Well, it means that we’ve trained our minds to use a particular set of skills that many people don’t understand or actively avoid using. Often those who pursue science have natural tendencies toward curiosity and information, and a quicker grasp of numerical analysis than others, but not always. Many of us are simply passionate enough about science to buckle down and learn the mindset that a scientist needs.

One skill is the ability to objectively analyze information.

We don’t just nod approvingly, our minds latch onto bits and pieces of everything that comes our way. From behavioral patterns to mathematical models, we are surrounded by information that is often raw and complex. Information alone doesn’t do anything for us, it isn’t good, or bad, or helpful – it exists, with that existence having inherent value and potential. Scientists are the ones who use that potential, those who look for the reality of what is truly there instead of just skimming the surface.

This skill comes in two flavors, and not everyone likes both equally.

First, there is the ability to dig deeper and deeper into the minute details. Taxonomists, chemists, and molecular biologists are examples of those who use this skill extensively. They need the attention to detail, the patience, and the dedication to catalog all  of the differences between two species, or to analyze thousands of samples of DNA looking for a matching sequence across taxa. Often, this is described as a reductionist analysis of the world. Application of objective analysis in this way leads us to further understanding of precisely how things work and what they are.

Second, there is the ability to analyze patterns and interactions at the scale of whole systems. Ecologists, sociologists, and climatologists are examples of those who use this skill extensively. These scientists need to integrate information from a variety of sources and find out how everything fits together, how individuals and parameters are connected, and determine the consequences of a series of changes. They are often dealing directly with the emergent properties of a system, rather than with the individual cogs in the machine. Application of objective analysis in this way results in a better comprehension of what happens and why it can happen again.

A second skill is the willingness to step back from our beliefs.

Scientists rely on evidence. We search for evidence, analyze our evidence in the form of data, build our models out of pieces of evidence, and sometimes change the world by finding evidence to support new ideas about the world. Yes, new ideas about the world. The importance of this skill is that every good scientist inherently understands that they are actively seeking to determine if they are wrong. We make the absolute best hypotheses possible, that logically could be right and are based on the most complete information at the time. And then we set out and dedicate ourselves to finding the truth.

Falsifiable hypotheses, experimental controls, and large sample sizes are all tools that we use to try to find the truth. And yet all of those tools are useless indeed if we ignore the result of their dedicated application. What happens when we are wrong? First, we determine just how much we can trust that answer. Did we collect reliable information? What might have gone wrong? This is also where statistics comes into play. Second, we accept it and determine the consequences. We know nothing – we seek everything. In reality, what this means is that we do change our minds sometimes (We thought the world was flat until evidence indicated otherwise, remember?). Additionally we end up accepting contradictions as an inherent part of reality.

Perhaps the evidence didn’t support my hypothesis because I don’t know enough to write the correct hypothesis yet.

socrates1

“I know that I am intelligent, because I know that I know nothing.” -Socrates


Why? What is it about these two skills that often sets scientists apart?

One reason, in my opinion, is that humans have a deep desire for the status that comes with being right. James Gee discusses our desire for social status and the need to support our “family” in his book The Anti-Education Era, and these are traits that do help us survive. We are inherently social animals, and being wrong can, quite frankly, sometimes have devastating consequences. Not only do we want to be right, we also want to be with others who are right because of the direct and indirect benefits we gain.

Consider this: “Do you want to rely on someone who says that they might be wrong?”

This is the kind of mental construct that exists to some degree in all social organisms, and it developed entirely outside of (and prior to) the construction of formal scientific methodology. It is a Darwinian safety mechanism that has been built over time because bad decisions have consequences – often death. The result is that most people tend to hesitate in following someone that has been wrong in the past.

Consider this: “Can you trust someone who refuses to admit that they could be wrong?”

Aye, there’s the rub. We are also aware of our own fallibility. Since we are capable of being wrong, there is always the possibility that we are at this moment, actually and truly wrong. This understanding of ourselves and others logically leads to skepticism that also benefits our survival, and someone who refuses to accept this possibility can (and should) seem insane and untrustworthy.

The Conundrum: A need to be skeptical of both those who state that they can be wrong, and of those who state that they cannot be wrong. 

Thus we see how trust in scientists is so easily lost, and how people can so easily be misled. We see why scientists rarely become celebrities, and why bad ideas that don’t kill you can spread like wildfire.

A second reason is the fear of the unknown, resulting in the construction of explanations independent of evidence. This is based in part on the concept of “mental comfort stories”discussed by Gee, as he illustrates how much our happiness and contentment about the state of our lives often relies on not challenging these comfort stories. Effectively, humans often reap benefits from ignoring evidence that contradicts their long-held beliefs.

Consider this: You (most likely) hold some beliefs for which you have no supporting evidence, besides tradition. Holding to those beliefs hasn’t killed you, and probably makes you happy and accepted by your community. 

So, what is wrong with this situation? You benefit from the mental comfort story (perhaps about god) and no one is harmed, right? Well, that is only true until you encounter a community that doesn’t hold those same beliefs. Then, those unsubstantiated claims might very well cause people in both groups to die, and will at least make people unhappy and unacceptable to the opposite community. Who is wrong? Is there any way to tell? No, because the ideas weren’t based on evidence in the first place – they were based on what comforted people, made them accepted and content with the world around them.

Consider this: You are shown evidence that contradicts your beliefs (perhaps about ethnicity/race), and you refuse to alter those long-held beliefs. Although you are happy that you’ve upheld your beliefs, the consequences can be major – losing your job, failing a class, being arrested because of your actions.

Well, you now have 2 good reasons to change this particular belief, but if you’re like most people, you won’t. The evidence indicates that your belief is wrong, and there are negative consequences to holding your belief. Perhaps you decide to split the difference – to not act on your belief in a way that causes problems such as being fired, but it will still make you unhappy. Or you decide to deal with the consequences so that you can remain happy and accepted by your chosen “family.”

The Conundrum: Some beliefs cannot always be conclusively shown to be right or wrong, and the resulting conflicts can be devastating. Other beliefs can be demonstrably wrong, and upholding them in the face of evidence can also be catastrophic.

What is the scientist’s solution (and Gee’s)? Use the skills of a scientist – objective analysis of reliable evidence & an open mind.

Evaluate your ideas with evidence whenever possible. Do not continue to hold beliefs that are conclusively false. Not only is this illogical, it will eventually have consequences for you and/or your society.

Build and use your mental comfort stories when there is no way to find the truth – but be open-minded. Other people with varying perspectives can hold ideas that are different from your own, and you should allow them that to retain right so long as it does not cause you harm. If it does, then you have the ability of any organism to make decisions that benefit your survival. You should feel free to try to convince them that you are right, but understand that typically neither of you has any evidence, and both ideas may be equally valid.


A social community for researchers, mostly scientists: ResearchGate


featured image: A grass shrimp (Palaemonetes pugio)

How to “Do well in class”

Students ask this question often, especially when they are taking a class in an unfamiliar subject, or when they have existing anxiety about the topic from previous experiences (of their own or from classmates).

It isn’t a bad question to ask! It shows that you are thinking about making a Plan for Success. In response, expect to hear 1st: some of the tried-and-true recommendations that you might already know, and 2nd: advice specific to that class/professor/subject.

Tried-and-True

  1. Have a growth mindset! Dedicate yourself to improvement and success, instead of reinforcing old prejudices about your skills. Positive thinking + Positive actions = Positive results.
  2. Take notes in class. Write down more than what is written on the slide instead of thinking that you can look back at the slides and remember everything the professor said.
  3. Come by office hours with your questions or set up a meeting with your professor. [See video below]
  4. Be engaged in class. Not everyone is outspoken, but you should all be willing to challenge your classmates’ comments, guess, or give your opinion when the professor opens the floor during class. You’ll remember more by being engaged with the material instead of passively listening.
  5. Do the review/practice exercises in the book. Think about them, and don’t just look up the answer online.

Science Focused

  1. Use your critical thinking skills! Many science courses are not about memorizing a lot of facts, even though you will be learning a lot of new terminology as well. The most challenging questions on exams will often require you to demonstrate that you can apply what you have learned.
  2. Find out how/why we know. Science is a process of understanding the world, so successful science students need to understand this methodology for inquiring about processes over the course of scientific investigations. Sometimes these answers will be the focus of more advanced courses than you are currently in, but asking the questions puts you in the right frame of mind.
  3. Make connections between old and new facts, as well as the processes linking them together. Few things occur in a vacuum, which means that interactions and changes are a normal part of our dynamic environment. Everything is connected!
  4. Be open-minded about new ideas. You don’t learn anything by refusing to consider facts that contradict your current beliefs & ideas about the world. Every single idea was new at one time.
  5. Understand the value of “I don’t know.” Why do we conduct experiments? Because we don’t know what results we will get. So why would you think that admitting you don’t know is a problem?

featured image: a giant bee in Bosque del Apache National Wildlife Refuge, Socorro, NM (July 2016)

Exercise your mind – Criticise!

Use your mental muscles every time you consider a decision or read an article.

Impress your friends, professors, and supervisors with your ability to analyze a situation instead of simply reacting and/or following someone else’s directions.

Image not showing?
Go to the Source: National Geographic Press


featured image: Autumn in Georgia, Armstrong State University (Fall 2016)

The Professor

Biology Instructor: Brigette Brinton

I’ve always figured that I’d be part of academia, and it is no surprise to me that Armstrong State University is now my second post as a college-level instructor. The courses that I teach are primarily introductory biology and ecology, although I have also previously taught a course on environmental issues and would gladly do so again. My experience with the National Science Foundation’s K-12 Fellowship program placed me in a good position for teaching first-generation and non-science students, which has served me well at both Armstrong and at Savannah State University. I draw on my diverse interests to engage all of the varied types of students in these classes, encouraging them to connect to the process of scientific inquiry from their own perspectives.

Anyone is welcome in my office, pretty much any time.

Ratings & Feedback

Reality Check: College professors have many responsibilities, often teach several different classes during a single semester, and are working hard at doing a good job at all of these tasks. Students often are taking many courses and have other responsibilities as well, and we understand that. I always do my best to help students who are struggling, and accommodate busy non-traditional students as much as is feasible.

  • Positive thinking + Positive actions = Positive Results
  • I am willing to help, and typically offer some form of extra credit in every class. This does not mean that everyone in class deserves a passing grade. It means that you will get the grade that you earn.
  • Grading and assignments are often “tough,” requiring critical thinking and demonstration of comprehension – not simply rote memorization. Translation: Know how to “put the pieces together,” or you often will follow the wrong path when trying to answer questions.

I read student feedback (on websites and on Course Evaluations), and at try to understand why a student would have made a particular comment – even if I truly believe that their frustration is the result of overwork, false expectations, or simply lack of effort.

Some insightful positive and negative comments that I’ve received over the past 2 years.

“The course was great!! Professor Brinton taught me a lot and I enjoyed her style of teaching. She encouraged group communication which I found to be effective. She also assigned a group project on a topic we found interesting which helped me learn about the topic a lot. She was a great professor. I would take her again!”
-Diversity of Life

“Panel discussions and hot topics helped with real world information from current events tie into our lectures.”
-Diversity of Life

This class was great! Every assignment was clearly explained and very helping to learning the material. Class participation was required but for good reason. Professor Brinton was always available for questions or any other additional help. Extra credit always helps your grade. Assignment were always helpful for retaining information for tests.”
– Environmental Issues

“The lab activities were directly connected to the previous lecture, so the information was presented quite thoroughly.”
-ISCI Earth and Life Science for Early Childhood Educators

“The daily “Kid Questions” helped me to think about how I would explain the content to a student.”
-ISCI Earth and Life Science for Early Childhood Educators

“Nothing was unexpected the Professor laid everything out and that was what was to be on the test. It was up to you, of course, to study and retain the material taught.”
-ISCI Earth and Life Science for Early Childhood Educators

“I understand that sometimes we have to work in large groups but I feel like having more than four people in a group was very difficult, especially when we had to come to an agreement on our experimental variable. It made the experiment less of a learning experience, though I still enjoyed it by the end.”
-ISCI Earth and Life Science for Early Childhood Educators

“Prof.B. I personally believe was the best teacher out of all the ones who teach this course. I think the course is meant to be very challenging on the students which a lot of students have misunderstood and in turn blamed the teacher as a poor teacher. I always felt Prof.B. wanted to help the students succeed and put a lot of effort into her class.”
-Principles of Biology I

“A quiz every single class…”
-Principles of Biology I

“I had her for Bio Lab 1107, and she was awesome. She really cares about your success in the class. One thing I will say is she does grade hard. She gives guidelines, but sometimes that still isn’t enough. Just ask questions and participate in discussion, and you’ll be fine. Her practicals don’t require a lot of studying, just look over the material.”
-Principles of Biology I Laboratory

“Professor Brinton goes very fast and does not explain concepts as they are on the test. You must take notes on the powerpoint before class and take notes on what she says during class. She is very willing to meet with you and explain things during her office hours or after class. She also does not care if you interject during her lecture.”
-Principles of Biology I

“The practical was too specific. I studied a lot and did not feel like the questions were a fair comprehension of the knowledge, but rather very tedious. Other than that, I found the professor to be very accessible and helpful answering questions throughout the course.”
-Principles of Biology II Laboratory

“I took her for the BIO1103 Lab course. Biology isn’t my subject but she makes the labs interesting. The class isn’t super hard, but you have to put in the effort. Attendance is mandatory and buy the lab manual because you are going to need it. You work for your grade, but she is a great teacher for people aren’t science people.”
-Concepts of Biology


featured image: Spanish moss (Tillandsia usneoides, which is neither Spanish nor a moss – it is a bromeliad) and Oriental arborvitae (Platycladus orientalis